NASA TECHNICAL NOTE NASA TN D-2570

NASA TN D-2570

4996400

TR

WN ‘JVH AUvHET HO3L

A NUMERICAL METHOD FOR
CALCULATING THE FLAT-PLATE
PRESSURE DISTRIBUTIONS

ON SUPERSONIC WINGS

OF ARBITRARY PLANFORM

by Wilbur D. Middleton and Harry W. Carlson

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION e WASHINGTON, D. C. o JANUARY 1965



TECH LIBRARY KAFB, NM

T

]

A NUMERICAL METHOD FOR CALCULATING THE
FLAT-PLATE PRESSURE DISTRIBUTIONS ON SUPERSONIC WINGS
OF ARBITRARY PLANFORM
By Wilbur D. Middleton and Harry W. Carlson

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Cﬁmmerce,
Washington, D.C. 20230 -- Price $1.00




A NUMERICAL METHOD FOR CALCUILATING THE
FLAT-PLATE PRESSURE DISTRIBUTIONS ON SUPERSONIC WINGS
OF ARBITRARY PLANFORM

By Wilbur D. Middleton and Harry W. Carlson

SUMMARY

This repcrt describes a numerical method based on linearized theory for
calculating the flat-plate lifting-pressure distributions on supersonic wings of
arbitrary planform, and presents examples 1llustrating its usage. The precision
of the method is shown by comparisons of pressure distributions and force coef-
ficients calculated from the numerical method with those obtained from estab-
lished analytical solutions for straight-line leading- and trailing-edge wings.
Several examples of the use of the numerical method to estimate the aerodynamic
characteristics of curved or cranked leading-edge wings are presented to illus-
trate the flexibility of the method.

INTRODUCTION

A numerical method based on linear theory which allows the determination
of camber surfaces corresponding to specified load distributions on supersonic
wings of arbitrary planform (restricted only to supersonic trailing edges) has
been presented in reference 1. The method substitutes approximate summations
for linear-theory integral equations and replaces the wing with a mosaic of
rectilinear elements closely approximating the wing planform. These substitu-
tions allow great flexibility in defining both the planform shape and interval
of integration for arbitrary wing planforms. The speed of present-day digital
computers makes the solution practical.

An extension of the numerical method of reference 1 allows the calculation
of the theoretical lifting-pressure distributions on flat wings of arbitrary
planform (restricted to supersonic trailing edges). This report describes such
a method and presents examples illustrating its use. The precision of the method
is shown by comparisons of pressure distributions and force coefficients calcu-
lated from the numerical method with those determined from established analytical
solutions for straight-line leading- and trailing-edge wings.

The further extension of the numerical method to the case of cambered wings
is indicated.
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SYMBOLS

leading-edge grid-element weighting factor
aspect ratio, b2/S

wing span

trailing-edge grid-element length

mean aerodynamic chord

grid-element width

drag coefficient
1ift coefficient
slope of 1lift curve per degree angle of attack

pitching-moment coefficient about x = 0

pressure coefficient
lifting-pressure coefficient, Cp lower - Cp,upper

average value of lifting-pressure coefficient over a
grid element (see eq. (7))

smoothed value of lifting-pressure coefficient obtained
from averaged coefficients (see eq. (8))

notch ratio

a constant (see figs. 16 and 17)

overall length of wing, measured in streamwise direction
designation of influencing grid elements (see fig. 2)
designation of field-point grid elements (see fig. 2)
free-stream Mach number

value of N at right-hand wing tip

value of N at left-hand wing tip
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Subscripts:

L*,N¥

le

te

influence function (see eq. (2))

average value of influence function over a grid element

(see eq. (5))
wing area
Cartesian coordinate system, X-axis streamwise

distance from wing apex to center of pressure
apex spanwise position of M wing (see fig. 14)
camber surface ordinate

wing angle of attack, deg

Tip chord

t ti —_—
wing taper ratio, Root chord
wing leading-edge sweepback angle

dummy variables of integration for x and Yy,
respectively

denotes a region of integration bounded by wing planform
and Mach forecone from point (x,y)

indicates value associated with element row
(see eq. (1k4))

value of a quantity along wing leading edge at By = N
value of a quantity alomg wing trailing edge at By = N

corresponds to case of two-dimensional wing

NUMERTCAL CALCULATION METHOD

The numerical method for calculating the theoretical 1lifting pressure
distributions on supersonic wings employs a basic equation of linear theory
(eq. (77a) of ref. 2) which relates the local surface slope of a point on a
lifting surface to the pressure coefficient at the point, the influence of



pressures upstream of the specified point
being taken into account. The method
employed herein actually is an extension of
the numerical method of reference 1, in
which the wing surface shape necessary to
support a specified 1ift distribution is
calculated.

8Y, Bn

A typical wing planform of arbitrary
shape, defined by a rectangular Cartesian
coordinate system, is shown in figure 1.
In accordance with the concepts of linear-
ized theory, the wing is assumed to have
negligible thickness and is assumed to lie
approximately in the z = O plane. The wing Figure 1.- Cartesian coordinate
surface is flat and at a slight incidence system.
to the local flow. The trailing edge of
the wing 1s supersonic.

Equation (2) of reference 1 may be rearranged to solve for the lifting-
pressure coefficient at the field point (x,y) as

Oz¢
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where values of ACp(g,q) in the integrand are previously determined values of
ACp(x,y) as discussed subsequently. The region of integration T extends over

the wing planform within the Mach forecone from point (x,y), as shown by the

shaded region of figure 1. The wing streamwise slope function 8Eg(x,y) is a
X

d
constant for the flat plate at incidence (aig) and is equal to the tangent of

the wing angle of attack.

The special integral sign k%“ of equation (l) denotes that only the gen-

eralized principal part (see refs. 2 and 3) of the integral is of interest,
which permits an evaluation of the integral across the singularity at y = 7.
The numerical method substitutes a summation for the integral of equation (1),
consisting of the sum of an average pressure coefficient times the integral of
the R function over the grid elements within 7. The R function, which may
be thought of as an influence factor relating the upstream pressures to the
lifting pressure at point (x,y), is defined as

R(x-£,y-n) = el 3 (2)
B2(y - 1)2\[(x - £)2 - p2(y - 1)2
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In integrating the R function over the individual elements, the integral
is regular except for the elements containing ¥y = 7, which require the defini-
tion of the generalized principal part. The integral of the R function for
these elements is more readily evaluated if the 1 limits are chosen as 7 - 3
and 1 + ®. With the grid system oriented to provide this choice of limits,
the integral of the R function over the elements containing y = 7n becomes
the definite integral of the function with the infinite portion discarded.

(See ref. 2 or 3.)

As in reference 1, the grid system of the numerical method is superimposed
upon the wing planform as shown in figure 2, with grid elements identified by
L and N replacing the integral elements df and dpn. Along the wing
leading and trailing edges, partial grid elements are used to improve the plan-
form definition. Values of L* and N* identify the grid element associated
with and immediately forward of the
field point (x,y). The grid element oL
L*¥ 1is numerically equal to x and | 2 3 a4 g 6 7.8 9 10
the grid element N* is numerically N

\‘ |

4
equal to By, where x and By take L/ 3
§ /(X,y) 2

on only integer values. The area of
integration of the numerical method
consists of a group of grid elements -
approximating T as shown by the By.8n  OF == ¥ ]
shaded region of figure 2. The grid -1E T
element system illustrated in fig- 2t
ure 2 is rather coarse; in practice, -3t 7
many more elements are employed.

The numerical summation treats
the integration interval element by .
element, with the average lifting-

Pressure coefficient A_CP(L,N) over Figure 2.- Grid system used in numerical
solution.

the element being multiplied by R,
the average value of the influence
function over the same grid element. The contribution of an individual element
(L,N) to the lifting-pressure coefficient at point (x,y) may be expressed by

%ﬁ(L*-L,N*-N) A(L,N) ACp(L,N) (3)

The weighting factor A(L,N) accounts for fractional elements along the wing
leading edges as follows:

A(L,N) = 0 (L < Lie)
A(L,N) = L - x34 (L = Lie) (4)
A(L,N) = 1 (L > Iye)



where Lje is numerically equal to the whole number part of the sum x,, + 1,
or 1+ [?lé]‘ The bracket notation is used to signify that only the whole

number part of the number is retained.

Since it has been observed that an integration of equation (2) is rela-
tively insensitive to small variations in £, the integral of the function R
over an individual element may be approximately evaluated with the value x - §
equal to its average value L* - L + 0.5. (See ref. 1.) The resulting expres-
sion for the average influence factor R is:

B \[(L*-L+O.5)2 - (W* -N -0.5)° WL*-L+O.5)2 - (1\1”*7-1\r+o‘.'5');2
R(L*-L,N*-N) = - B
(L* -L+0.5)(N* -N -0.5) (L* -L+0.5)(N* -N+0.5)

(5)

A graphical representation of this factor is shown in figure 3. The values of
R between the limits of the Mach forecone at a constant (L*¥ - L) station sum
to zero, the positive values canceling the single negative value at N* = N. At

L* = L, where the forecone includes only one element, R 1s zero.

—
Figure 3.~ Distribution of R function.

With the integral of equation (1) replaced by the combined contribution of
all elements within T, the lifting-pressure coefficient at element (L*,N*) is
Npax L%~ |8 -n]

Ao (L%, N*) = - ¥ B2 , 1 R(L¥-L,N*-N) A(L,N) ACp(L,N) (6)
P ’ = - E = x -L,N" - ’ plL,
Nmin Ije



The vertical lines used in |N* - Nl designate the absolute value of the

enclosed quantity. The limits on L in the summation are those of the wing
leading edge and the Mach forecone at a selected N wvalue.

The calculation of ACP(L*,N*) requires the prior determination of all
values of ZEb(L,N) within the region of integration (where Zﬁb is an average

value of pressure coefficient over a grid element obtained from ACp, as dis-

cussed subsequently). The order of calculation of ACp(L*,N*) is from apex aft

(i.e., increasing values of 1¥); thus, all pressure coefficients within the
Mach forecone from any element have been previously obtained and no_unknown
pressure coefficients arise in the summation. Since the value of R(L*,N*) is

zero, ZE?(L*,N*) in the summation is not required.

Theoretically, ACp(L*,N*) defined by equation (6) is the pressure coeffi-
cient at the aft midpoint of the L*,N* element. This value, however, is not
as representative of the average value of ACp over the element as is the value
of ACp at the center of the element. An approximate average value,
XCp(L*,N*), is obtained by linearly interpolating along N* for the pressure
coefficient at the midpoint of L*,N* and is based on the calculated value of
Ap(L*,N*) and the previously averaged value of ACp(L*-1,8*) of the grid

element immediately forward of L*,N*:

Ap(L* ,N*) = %ACP(L*,N*) + %‘-A_C—p(L*-l,N*) (I* > L1e) (7a)

When L* is the leading-edge block of N¥, the value of ZEﬁ(L*,N*) is con-
sidered equal to the calculated value of ACP(L*,N*); that is,

ACp(L*,N*) = ACp(L*,N*) (L* = Lie) (7p)

In the development of the numerical method described in this report, it was
found that ACp, when integrated over the wing planform, produced lift coeffi-

clents and center-of-pressure locations in good agreement with those obtained
from established analytical solutions. However, comparisons between the detailed
pressure distributions determined by the numerical method and those obtained from
the analytical solution were poor (for most wing planforms); especially for
sweptback subsonic leading-edge wings, where theoretically an infinite pressure
coefficient is obtained at the leading edge, the numerical-method pressure dis-
tributions fluctuated considerably about an approximate mean defined by the
analytical solution.



In order to reduce local oscillations in pressure from element to element
and to permit critical comparisons between pressure distributions obtained from
the numerical method and those obtained from the analytical solutions, a
"smoothing" operation was performed upon the Zﬁb values. For use in this

operation a number of experimental-data smoothing techniques were tried, in
which a weighted mean of a group of values is calculated. The equation selected
was a nine-point smoothing formula operating along a constant N* value:

0.24(L*-4,N%) ZEb(L*-h,N*) + 0.4a(L*-3,8%) ACp(L*-3,8°) + 0.6A(L*-2,N*) ACp(L*-2,N%)
+ 0.8A(L*-1,8*) A0p(L*-1,8%) + A(L*,N*) ACp(L¥,W*) + 0.8ACp(L*+1,8%)
+ 0.68CH(L*+2,N*) + 0.UAGL(L*+3,N%) + 0.2ACp(L*+k,N%)

ACp,a(L*,N%) = (8)

0.24(L*-4%,N*) + 0.4A(L*-3,8%) + 0.6A(L*-2,N*) + o.BAEE*-l,N*) + A(L¥,N*) + 2.0 7

where the A value is the grid-element factor as defined in equation (4) (with
A=1 for L*> Iie).

The nine-point smoothing formula was found superior to techniques which
employed both spanwise and chordwise smoothing, to techniques which utilized

additional averaging terms in the calculation of ACP(L*,N*), and to techniques

which used different sets of grid elements along N*. The important feature of
the smoothing technique was the inclusion of a sufficient number of chordwise
grid elements to approach satisfactorily a local mean value. The smoothing
equation is not used in the calculation of the wing pressure coefficients

(eq. (6)), but is employed after ZE@(L*,N*) has been computed for the entire

wing planform. However, since the nine-point formula requires four grid elements
aft of element (L*,N*), the wing planform is extended four elements aft of the
actual wing trailing edge. This step is permissible since the wing trailing
edge is required to be supersonic.

Since the smoothing is applied only along constant N* stations, erratic
behavior of the pressure coefficients might be expected in cross plots at con-
stant L* stations. Such is not the case, as shown subsequently, except in the
limiting condition of a sonic leading edge, which offers no difficulty if the
leading edge is only slightly supersonic or slightly subsonic.

The general effect of the nine-point smoothing technique, aside from the
improvement in detailed pressure distributions, is a slight resultant decrease
in the integrated wing force coefficients. The percentage decrease is a func-
tion of the size of the wing (number of grid elements used) and the degree of
leading-edge sweepback. For typical wings of interest, the decrease averages
approximately 2 to 4 percent for the lift, drag, and pitching-moment coeffi-
cients, with little effect on the center of pressure.



Calculations of the wing force coefficients require appropriate area and
lifting-pressure summations, which are limited to the right-hand wing panel
because of symmetry. Since only the smoothed pressure distributions are of
interest, force coefficients based on ACp  are calculated.

The wing area may be found through a summation as follows:

N*=Nmax L*=Lte

5=2 Z ZA(L*,N*) B(L¥,N*) c(L*,N*) (9)
N*=0 L¥=Lje
where
Lie leading-edge grid element, 1 + [?lé]
Lie trailing-edge grid element, 1 + [xg¢]

A,B,C leading-edge, trailing-edge, and center-line or wing-tip grid-element
fractions, respectively

The leading-edge grid-element fraction is defined by equation (4), the trailing-
edge grid-element length is defined by

B=1 (L* < Lte)
N (102)
B=Xte + 1 - Lie (L™ = Lte)
and the center-line or wing-tip grid-element width is defined by
C=0.5 (v = 0)
C=1 (0 < N* < Npmax) (10b)
C = 0.5 (W = Nmax)
The 1lift coefficient may be obtained from the following summation:
N*=Nmax L*the
Cp = B% z zmp,a(L*,N*) A(L*,N*) B(L*,N*) c(L*,n%) (11)

* *



The pitching-moment coefficient about x =0 is

N*=Npax L*the
Cp = —= }Z E:(Lﬁ'- 0.5)ACp o (L*,N%) A(L*,N%) B(L*,N*) c(L*,N%) (12)

) Bsa ¥ *

The drag coefficient may be expressed as follows:

dz
C = -C .._c 1
D L 3> (13)

This relationship does not consider any contribution of the theoretical
"Jeading-edge-suction" force and accounts only for the inclination of the nor-

mal force to the relative wind.

The distribution of wing lift in the streamwise and spanwise direction may
be obtained from summations, taken row by row, of grid element forces in the L-
and N-direction, respectively. These distributions are conveniently expressed
as fractions of total wing 1lift as follows:

For the streamwise 1lift distribution,

N*=Nmax
2 zmp,a(L*,N*) A(L*,N) B(L*,N*) c(L*,N%)
Liftr* *_
SR (14a)
Total 1ift BC1S

and for the spanwise lift distribution, at a selected N* value on the right-
hand wing panel only,

L*=Lte
zmp,a(L*,N*) A(L*,N%) B(L*,N*) c(L*,n%)
Liftyx  L=lie 7 (1)
Total 1ift BCLS T

EXTENSION OF NUMERICAL CALCULATION METHOD

The method for calculating the lifting-pressure coefficients on supersonic
wings outlined in the preceding section has been restricted to the case of flat

10



aZc
ox
(equal to the tangent of the wing angle of attack). The same calculation method
could be extended to the case of wings having cambered surfaces by considering
0Z¢

wings by restricting the wing streamwise slope function (x,y) to a constant

to be a function of the x and y planform coordinates. This extension
X

would require only the addition of a suitable method for providing the variable
slope term to be used with the grid-element system, that is, supplying an appro-

oz
priate function S—E(L*,N*).
X

COMPARTSONS AND EXAMPLES

Several comparisons of lifting-pressure distributions and wing force coef-
ficients calculated from the numerical method with those obtained from estab-
lished analytical solutions are presented in this section to illustrate the pre-
cision of the numerical method. Also, several examples of the use of the numeri-
cal method to estimate the aerodynamic characteristics of curved or cranked
leading-edge wings are presented to illustrate the flexibility of the method.

The data obtained from the numerical method were calculated on a digital
computer, programed to employ the equations presented in the section entitled
"Numerical Calculation Method." In the figures presenting the pressure-
distribution comparisons, the numerical-method pressure coefficients are the
smoothed values.

Comparison of Numerical Method With Analytical Solutions

Several comparisons between the numerical-method solutions and established
analytical solutions may be made for delta-wing planforms, with various orienta-
tions between the wing apex half-angle and the apex Mach line. Figure 4 shows
the lift-curve slope and streamwise center-of-pressure location for a delta-wing
planform as a function of the leading-edge sweepback parameter f cot A.

The numerical-method data agree quite well with the theoretical solution
of reference 4, with the exception of the sonic leading-edge wing
(B cot A = 1.0). The sonic leading-edge wing is a limiting condition for the
numerical method, as discussed subsequently, although only slightly subsonic or
slightly supersonic leading-edge wings offer no difficulty. A tendency of the
numerical method to give slightly lower lift-curve slopes than those obtalned
from the theory of reference 4 may be observed for the subsonic leading-edge
condition. This effect is primarily attributed to a flattening of the leading-
edge pressure peaks (theoretically infinite) caused by the averaging techniques.

The force data from the numerical method are affected, to some extent, by

the number of grid elements chosen to represent the wing. The width of the wing
semispan, in By grid elements, for most of the delta-planform series was

11



Npax = 50, which defined in turn the wing length. Wings with small values of

B cot A, that is, 0.20 or 0.40, are very long (in L wunits) if scaled to a
50-unit semispan; therefore, in calculating the data for these wings, semispan
widths of 10 and 20 units, respectively, were used.

Theory of reference 4
o Numerical method

08y

16 1.0.80

o6l Beot A

B¢

04t

0zr

0 4 8 12 16
Beot A BeotA

Figure 4.- Aerodynamic characteristics of delta wing.

The basic consideration in scaling the wing for the computer program is
calculation time. A delta wing with approximately 1200 grid elements repre-
senting the semispan requires on the order of 15 minutes calculation time on a
high~speed digital computer. Larger wing areas require proportionately longer
calculation time, although both wing area and average chord length affect the
time required.

The effect of Npgx on the wing lift-curve slope is shown in figure 5 for
a representative delta wing with B cot A = 1.60 and B cot A = 0.80. Only
very minor changes in the lift-curve slope occur when the number of grid elements
is greater than Npgx = 20. On the basis of the data of figure 5, the more com-

plicated planform shapes of this report were scaled to a value of Npygx on the
order of 50 units for the computer program.

Comparisons of detailed lifting pressure distributions between the numerical
method and the data of reference 4 for the delta wing at several values of
B cot A are presented in figures 6 to 8.

12




Theory of reference 4

o Numerical method

Figure 5.- Effect of
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on lift-curve slope of

representative delta wing.

Bcot A=0.99

30

| soc000000°°

Bcot A=1.00

—— Theory of reference 4

° Numerical method

- Mach line
(B cot A=1.00)

Bcot A=10I

)
5
X
b/2

Figure 6.- Lifting~pressure distributions at and near sonic
leading-edge condition for delta wing.

x/1 = 1.0; Npax = 50.
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Lifting-pressure data for a delta wing with a sonic leading-edge condition
(B cot A = 1.00) and two near-sonic leading-edge conditions (B cot A = 0.99
and B cot A = 1.01) are presented in figure 6. In all three cases, spanwise
oscillations of the lifting-pressure data (at x/l = 1.0) occur and they become
so large as to invalidate the total wing force coefficients for the sonic
leading-edge case. These oscillations damp out rapidly for leading-edge flow
conditions which are only slightly different from the sonic case, so that, for
practical purposes, wing planforms with sonic leading-edge conditions can be
studied through only slight alteration of the leading-edge sweepback parameter.

The case of a subsonic leading-edge wing (B cot A = 0.80) is illustrated
in figure 7. A staggered ordinate scale is used in figure 7 (and in several
subsequent figures) to separate the comparisons for spanwise cuts at several
x/l stations. In general, good agreement is obtained between the numerical
and analytical solutions, although some unevenness is apparent in the numerical
data. The data of figure 7 could be considered to be those of the apex region
of a much larger (longer and wider) wing having the same sweepback parameter
but at correspondingly reduced values of x/l. Enlarging the wing size would
improve the detailed-pressure-coefficient comparisons at a given x/Z, but
would require longer calculation time without appreciable effect on the inte-

grated wing force coefficients.

Lifting-pressure distributions for a supersonic leading-edge delta wing
(B cot A = 1.20) are shown in figure 8. Agreement between the numerical and
analytical solutions in this case is quite good, although the numerical method
does not exhibit the sharp break at the Mach line characteristic of the analyt-
ical solution. The unevenness of the pressure coefficients observed in the sub-
sonic leading-edge case does not occur because of the reduced effect of the
averaging techniques with the less severe leading-edge pressures.

Comparisons between the numerical method and the theory of reference 5 for
rectangular wings is presented in figures 9 and 10.

Lifting~-pressure distributions for a rectangular wing of BAR = 1.0 are
presented in figure 9 for cuts at representative lengthwise stations. In this
figure, the pressure coefficients are divided by the two-dimensional values
acting on the forward part of the wing within the leading-edge Mach lines. The
numerical data agree reasonably well with corresponding data from reference 5
but exhibit some effect of the number of grid elements used.

Figure 10 illustrates the general effect of the number of spanwise elements
Nmax on rectangular-wing data obtained for a wing of PR = 2.0 having semi-
span widths of 10, 20, and 40 grid elements. Since the ACp,a values of the
numerical method occur at different x/1 stations for different Npgx values

(at the midpoint of the elements), the pressure coefficients of figure 10 were
interpolated to a common X/Z station (the trailing edge). The asymptotic
approach of the pressure coefficients, 1lift coefficient, and center-of-pressure
location to the theoretical values from reference 5 with increasing Npgx 1is

apparent.

14



Theory of reference 4
° Numerical method

Bcot A=0.80

Mach line —»

x/1
20 40 70 100

BAC,

b/2

Figure T.- Lifting-pressure distri-
butions for subsonic leading-edge
delta wing. Npgx = 50.

Theory of reference 4
° Numerical method

B cot A=1.20

15 x/t
.40
A0} o
% .70
.05
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a

0 .5 .0

_
b/2

Figure 8.- Lifting-pressure distributions
for supersonic leading-edge delta wing.

Npax = 50.
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Theory of reference 5
o Numerical method
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Figure 9.- Lifting-pressure distributions for rectangular wing. PBR = 1.0;

Nmax =
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Figure 10.- Effect of Nmax on characteristics of rectangular wing.
BR = 2.0.

Lifting-pressure distributions for a more complex planform geometry, the
double-delta type, are shown in figure 11 where the numerical-method data are
compared with the theoretical data obtained from the superposition solution of
reference 6. TFor both Mach numbers (M = 1.414 and 1.667), the data from the
numerical method exhibit approximately the same areas under the lifting-pressure
curves as the superposition solution, although no sharp peaks occur in the
numerical method. A comparison of the wing force coefficients obtained by the
two solutions likewise shows reasonable agreement:

M= 1.41% M = 1.667
Cly, Xep /1 Cl, xcp/l
Superposition analysis . . . . . 0.051k4 0.682 0.0k461 Not
given
Numerical method . . . . . . . . 0.0507 0.687 0.04k49 0.686
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Figure 11.- Lifting-pressure distributions for double-delta wing. Npax = 50.

A final comparison illustrating the use of the numerical method to estimate
the linear-theory characteristics of a wing family is presented in figure 12,
where the lift-curve slope of a wing series having an unswept midchord and a
constant taper ratio of 0.5 is shown for a Mach number of 1.53. Reasonable
agreement between the numerical method and the theory of reference 7 was
obtained. (In order to limit calculation time, a value of Npgx of 25 was

used for the wing with an aspect ratio of 1.)
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Theory of reference 7
o Numerical method
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Figure 12.- Lift-curve slope of wing series
having unswept midchord. A = 0.5; M = 1.53.

Application of Numerical Method to Wings of Arbitrary Planform

Several examples of the use of the numerical method to estimate the aero-
dynamic characteristics of wings having cranked or curved leading edges are
presented in figures 13 to 17.

The characteristics of an M-wing planform having symmetric apexes at 0.30
semispan are illustrated in figure 13. The wing leading edge is sweptback
equally on either side of the apexes, and the trailing edge is notched varying
amounts. Compared with a delta wing having the same sweepback parameter
(fig. 4), the M wing has a generally higher lift-curve slope for B cot A < 1.0,
has the same lift-curve slope for B cot A > 1.0 (equal to the lift-curve slope
of the infinite-aspect-ratio wing), and has a center-of-pressure location for-
ward of that of the delta wing by approximately 2 percent of the wing length.
The effect of the trailing-edge notch on the M wing is to carve out a relatively
low lift area, increasing the lift-curve slope of the remaining wing.

The effect of apex position on the aerodynamic characteristics of an M-wing
family is shown in figure 14 for B cot A = 0.80, with symmetric sweepback on

Y.
either side of the apexes as before. Apex positions 2 of 0 and 0.53 (or

b/2
greater) correspond to a single and an isolated pair of arrow wings, respec-
tively. The effect of apex position on the lift-curve slope of the family is
not large (approximately 5 percent for the unnotched planforms) and varies only
slightly over a range of apex positions from 0.20 to 0.40 semispan. The corre-
sponding shift in center of pressure is also rather small. However, an inter-
esting effect of notching the M-wing planforms may be observed from the data of
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family with apex at 0.30 semispan.

figures 14 and 15.
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Figure 14.- Effect of apex position on
characteristics of M-wing family.
B cot A = 0.80.

The notch-ratio data were obtained by removing sections of

the delta type of trailing edge, a process which is partially invalid because

of the assumption of a supersonic trailing edge.

Sonic trailing edge

The wing area having invalid
pressure distributions is
that shown cross-hatched in
the sketch; the corresponding
aerodynamic characteristics
are indicated by dashed lines
in figure 1L4. These data are
included because of the
insight offered into the
pressure distributions on the
M-wing planform.

The M wing with varying apex position may be alternatively regarded as a

wing of fixed apex position of varying length.

The cuts across the wing of

figure 15 correspond to wings having apex positions of 0.53, 0.40, 0.30, 0.25,
and 0.21 semispan (x/1 = 0.22, 0.38, 0.58, 0.75, and 0.96, respectively).
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At an x/1 of 0.22, the pressure distribution obtained is that of the subsonic
leading-edge delta wing with large pressure coefficients along the wing leading
edge. The pressure distributions for cuts at progressively higher values of
x/l are characterized additionally by a pressure peak in the vicinity of the
Mach line from the opposite apex. The effect of notching the M wings of inter-
mediate length (apex at approximately 0.30 semispan) is to remove a portion of
the highly loaded area near the Mach line and thereby reduce the lift-curve
slope in comparison with that for notched wings having smaller (or larger) apex
semispan fractions.

The aerodynamic characteristics of a wing family having an ogive type of
leading edge are shown in figure 16. The leading-edge geometry is specified in
the equation at the top of the figure, with K = 1 giving a straight-line
leading edge and K = 2 defining a parabolic leading-edge shape. The wings of
the family have the same span and the same chord distribution; they are sketched
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Figure 15.- Pressure distribu- Figure 16.- Characteristics of wing
tions on M-wing planform. family having same span and chord
B cot A = 0.80. distribution.
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for representative members having aspect ratios of 2.24. Three sweepback param-

eters are presented, all corresponding to a subsonic leading-edge condition for
the arrow wing, as shown. The 1lift-
curve slope of the parabolic leading-

%? K edge wing is approximately 8 percent
. . _ y y higher than that for the arrow wing,
Leoding-edge equation: %-'6 (VZ) 4 (VZ) with an accompanying large forward

shift in the streamwise center of

A A A A e

A final example of the theoreti-

o8r e/1 cal aerodynamic characteristics of a
/////ﬂ_\\\\\\\“‘--______s4 parametric wing family is shown in
Bc. osf /////’——_—-_-—____‘—___‘_"% figure 17, illustrating an ogee

e series having the same span and
length and a sweepback parameter of
B cot A = 0.80 for the straight-
line leading-edge wing. The effect
0 of notch ratio is also shown. The
2 center of pressure moves steadily
4 aft with increasing K, primarily
because of the aft shift in wing
area. However, the wing lift-curve
. . , . slope reaches a maximum at K = 3,
¢ 2 4 6 8 o] and this value is approximately
K 10 percent higher than that for the
delta or arrow wing of K = 1. As
K becomes large, the wing takes on

o > N @ &
1

Figure 17.- Characteristics of ogee fam-

ily having same span and length. an increasingly rectangular shape
(B cot A)paqt, = 0.80. with associated theoretical
characteristics.

CONCLUDING REMARKS

A numerical method for calculating the theoretical flat-plate lifting-
pressure distributions on supersonic wings of arbitrary planform, restricted
only to a supersonic trailing edge, has been presented. The precision of the
method was illustrated through comparisons of lifting-pressure distributions
and force coefficients between the numerical method and established analytical
solutions, and typical examples of the use of the method to estimate the theo-
retical aerodynamic characteristics of supersonic wings having curved or cranked
leading edges were presented. The extension of the method to the case of cam-
bered wings was indicated.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., October 8, 196k.
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